ECMWF - DestinE factsheets

DIGITAL TWIN FOR WEATHER-INDUCED EXTREMES

Sharpening our vision of extreme weather and its impacts

KEY FEATURES

Km-scale Earth system models

Uses "km-scale" models to better represent extreme weather events and deliver information at scales where their impacts are felt.

Routine production of global simulations

Produces global simulations at 4.4 km resolution for 4 days ahead to predict extreme weather events worldwide.

On-Demand refinement over Europe

Produces on-demand regional simulations at 750 to 500 m resolution for 2 days ahead to refine the representation of extreme events occurring over Europe.

From weather to impactsector information

Integrates impact sector models in the Digital Twin workflows, to transform meteorological data into user-relevant information. The Digital Twin for Weather-Induced Extremes (Extremes DT) supports decision-making in response to meteorological, hydrological and air quality extremes. It has both a global component, producing simulations at resolutions of a few kilometres for four days ahead, and a regional component, producing simulations at hundreds of metres for two days ahead. Later in Phase 2, it will become possible to configure and activate on demand this regional component, providing a magnifying glass on extreme events occurring in Europe.

INNOVATIVE DEVELOPMENTS

- Regular use of km-scale models exploiting preexascale EuroHPC supercomputers
- On-demand workflows for bespoke global and flexible regional simulations of past, current or future extreme events
- An automated detection and activation mechanism for selected extreme events
- Al-supported uncertainty quantification and interactivity.

Harnessing the latest developments in:

Earth System Prediction

Building on decades of expertise in operational Numerical Weather Prediction and impact modelling.

Supercomputers

Adapting to and exploiting distributed (pre-) exascale EuroHPC computing resources across Europe.

Artificial Intelligence

Exploiting recent breakthroughs in AI for weather and climate sciences.

TECHNICAL INFORMATION

	biobal component	Regional component			
Models	IFS-NEMO	Arome, Harmonie-Arome, Alaro			
Resolution	Atmosphere: 4.4 km Ocean: 25 km	Atmosphere: 750 m, 500 m			
Initialisation frequency	Daily	On-Demand *			
Initial Time	OO UTC				
Simulation Length	4 Days	2 Days			
Initial conditions	ECMWF operational analysis (9 km)				
Boundary conditions		Global Extremes DT			
HPCs	Euro HPC systems, LUMI in p	Euro HPC systems, LUMI in phase 1, Leonardo in phase 2			
Output grid	Reduced gaussian cubic octahedral	(Projected) lat-lon			
Output parameters	DestinE data portfolio				
Output frequency	Hourly Surface and pressure levels	Sub-hourly			

Global Component

Explore the currently available simulations: https://destine.ecmwf.int/extremesDT_simulations

* This feature will become available later in phase 2

DELIVERING SECTORAL INFORMATION FOR EXTREME WEATHER EVENTS

question: "How much wind energy production can we expect during a windstorm?"

Regional Component

The extreme event detection algorithm identified a windstorm for February 18, 2022. In response, a regional model was configured with a 750-metre resolution off the coast of Belgium and driven by the global component of the Extremes DT. This model provided high-frequency wind data, which was utilized by a wind farm parameterization. The system successfully predicted a drop in energy production due to the shutdown of the wind farms, two days in advance.

EXTREMES DIGITAL TWIN CONSORTIUM

The global component is delivered by ECMWF. The regional component is delivered by a consortium of 29 partners led by Météo-France through a contract procured by ECMWF.

France	Météo-France INRAE CNRS	Latvia Slovenia Portugal	LEGMC ARSO IPMA	Ireland Spain	Met Éireann AEMET BSC	IHMZ MO INMI	Belgium Austria Finland	KMI-IRM GeoSphere Austria FMI	Slovakia Poland Italy	SHMU IMGW CINECA
Norway Denmark	Met Norway DMI	Estonia Bulgaria	TalTech NIMH	Czech Republic	CHMI	IVM lungaroMet	Sweden	CSC SMHI	Germany Romania	DLR NMA

